59 research outputs found

    Methods for Ultra-Wideband Pulse Generation Based on Optical Cross-Polarization Modulation

    No full text

    Metformin promotes osteogenic differentiation and prevents hyperglycaemia-induced osteoporosis by suppressing PPARγ expression

    No full text
    Metformin can prevent hyperglycaemia-induced osteoporosis and decrease the bone fracture rate, but the mechanism has not been fully elucidated. To reveal the mechanism by which metformin affects hyperglycaemia-induced osteoporosis, we treat a mouse osteoporosis cell model with metformin and find that osteoblast mineralization increases and PPARγ expression decreases. Single-cell mRNA sequencing analysis show that PPARγ is highly expressed in the bone tissue of osteoporosis patients, which highlights the role of PPARγ in osteoporosis. Furthermore, we find that PPARγ is the effector through which metformin prevents osteoporosis. We further examine the mechanism of PPARγ regulation and reveal that metformin regulates PPARγ expression through the AMPK pathway and that PPARγ affects osteoblasts through the endoplasmic reticulum stress (ERS) pathway. Moreover, we verify the association between the effect of metformin on bone metabolism and the expression of PPARγ in high-fat diet-induced diabetic rats. Thus, we identify and functionally validate that metformin prevents hyperglycaemia-induced osteoporosis by regulating the AMPK-PPARγ-ERS axis

    Ultra High-Repetition-Rate Pulse Sources Based on Cascaded Four Wave Mixing in EYDF

    No full text

    Mapping Quantitative Trait Loci Using Naturally Occurring Genetic Variance Among Commercial Inbred Lines of Maize (Zea mays L.)

    No full text
    Many commercial inbred lines are available in crops. A large amount of genetic variation is preserved among these lines. The genealogical history of the inbred lines is usually well documented. However, quantitative trait loci (QTL) responsible for the genetic variances among the lines are largely unexplored due to lack of statistical methods. In this study, we show that the pedigree information of the lines along with the trait values and marker information can be used to map QTL without the need of further crossing experiments. We develop a Monte Carlo method to estimate locus-specific identity-by-descent (IBD) matrices. These IBD matrices are further incorporated into a mixed-model equation for variance component analysis. QTL variance is estimated and tested at every putative position of the genome. The actual QTL are detected by scanning the entire genome. Applying this new method to a well-documented pedigree of maize (Zea mays L.) that consists of 404 inbred lines, we mapped eight QTL for the maize male flowering trait, growing degree day heat units to pollen shedding (GDUSHD). These detected QTL contributed >80% of the variance observed among the inbred lines. The QTL were then used to evaluate all the inbred lines using the best linear unbiased prediction (BLUP) technique. Superior lines were selected according to the estimated QTL allelic values, a technique called marker-assisted selection (MAS). The MAS procedure implemented via BLUP may be routinely used by breeders to select superior lines and line combinations for development of new cultivars

    Multiuser asynchronous OCDMA system with different types of FBG based En/Decoders

    No full text

    Effects of CeO2 Content on Friction and Wear Properties of SiCp/Al-Si Composite Prepared by Powder Metallurgy

    No full text
    SiCp/Al-Si composites with different CeO2 contents were prepared by a powder metallurgy method. The effect of CeO2 content on mechanical properties, friction and wear properties of the composites was studied. The results show that with the increase in CeO2 content from 0 to 1.8 wt%, the density, hardness, friction coefficient of the composites first increases and then decreases, the coefficient of thermal expansion (CTE) and wear rate of the composites first decreases and then increases. When the content of CeO2 was 0.6 wt%, the density and hardness of the composite reached the maximum value of 98.54% and 113.7 HBW, respectively, the CTE of the composite reached the minimum value of 11.1 × 10−6 K−1, the friction coefficient and wear rate of the composite reached the maximum value of 0.32 and the minimum value of 1.02 mg/m, respectively. CeO2 has little effect on the wear mechanism of composites, and the wear mechanism of composites with different CeO2 content is mainly abrasive wear under the load of 550 N. Compared with the content of CeO2, load has a great influence on the wear properties of the composites. The wear mechanism of the composites is mainly oxidation wear and abrasive wear under low load. With the increase in load, the wear degree of abrasive particles is aggravated, and adhesive wear occurs under higher load

    All-Optical OFDM Demultiplexer Based on an Integrated Silicon-on-Insulator Technique

    No full text
    corecore